返回首页       返回上一页
个人信息
学号 0228308 姓名 王昕
学院 城市建设与环境工程学院 专业 供热、供燃气、通风及空调工程
申请学位 硕士 指导教师 黄晨(教授);
论文信息
论文标题  大空间建筑不同上开口形式室内热环境研究
Title  无信息
关键词  大空间建筑 顶部开口 上部侧墙开口 室内热环境 空调负荷 数值模拟 现场实测
Keyword  upper-side opening, roof opening, indoor thermal environment, energy consumption, numerical simulation site-measurement.
完成时间  2004年12月 中图号  TU8
摘要  大空间建筑由于通风、采光等设计方面的要求,通常在建筑上部设有开口,

其上部开口对室内热环境和空调能耗影响显著,且不同上开口形式室内热环境和空调能耗的差别亦十分明显,故上部开口是影响大空间建筑热环境设计和空调运行的重要因素之一。本文围绕顶部开口和上部侧墙开口形式的大空间建筑室内热环境特性和空调能耗进行了一系列理论分析、数值模拟和现场实测研究。

为了能够利用CFD比较准确地模拟暖通空调领域中的气流流动和传热问题,论文对上海国际体操中心数值模拟用边界条件进行深入探讨和完善。将壁温作为边界条件时,考虑到壁面之间的互相辐射,本文利用Gebhart吸收系数建立墙体各项传热的能量守恒方程式求解壁温。论文提出采用表面换热分析的方法求解墙体对流换热系数这一方程式中的关键参数,计算所得壁温值与实测值接近。由于壁温和室内空气温度存在对流换热,使得墙体换热计算和CFD室温计算互相影响,因此本文迭代计算壁面温度和垂直温度。采用国际体操中心现场实测数据与数值模拟计算结果进行对比,结果显示模拟值与实测值基本一致,误差最大值为6.9 %。

针对不同上开口形式下,不同结构参数和空调运行参数对室内热环境特性的影响,以及不同上开口形式热环境特性的差别等问题,应用PHOENICS模拟软件分别对设有顶部开口和上部侧墙开口的大空间建筑进行室内速度场和温度场的多工况模拟。模拟结果显示,上部侧墙开口时的空调区温度略高于顶部开口时2℃左右;非空调区温度明显高于顶部开口工况约15℃左右。无论是温度分布还是速度分布,顶部开口形式都要比侧墙开口更加有利于改善大空间建筑室内热环境。

分别采用分层空调负荷计算方法、数值模拟和热平衡计算方法,计算和比较这两种不同上部开口形式下大空间建筑室内负荷构成及其节能特性。采用现场实测数据与负荷计算结果进行对比,结果显示计算值与实测值基本一致,且顶部开口形式较上部侧墙开口空调负荷小9.3%。根据分层空调负荷计算结果和现场实测数据,初步探讨大空间建筑非空调区对空调区的热转移问题和不同上开口结构参数及空调运行参数对空调负荷的影响及规律。结果表明,顶部开口时喷嘴高度既是影响非空调区对空调区对流热转移的主要因素之一,亦对空调负荷的影响较其它因素更加明显。喷嘴高度增加,负荷接近线性递增。上部侧墙开口时,非空调区上开口高度是影响负荷的主要因素之一。开口高度增高,负荷明显减少。

对上海国际体操中心比赛主场外环境、室内温度分布和室内负荷热平衡三大项目进行现场实测。依据实测结果得到了室内温度分布和室内负荷及其构成。利用先后两次上开口面积不同时的现场实测数据,分析上开口面积对负荷的影响及其节能特性,为热环境和空调节能设计,以及论文所进行的数值模拟与理论研究提供了实验依据。

本文围绕顶部开口和上部侧墙开口形式的大空间建筑室内热环境特性和空调能耗进行研究。研究结果表明,顶部开口形式比侧墙开口更加有利于改善大空间建筑室内热环境,且顶部开口形式较上部侧墙开口空调负荷小9.3%。这将为大空间建筑结构设计、空调设计提供理论基础和设计依据,具有一定的实际指导意义。

Abstract  To better meet the requirements of ventilation and daylighting etc, there are upper-openings in large space buildings. It was found that the upper-openings of large space buildings had a significant effect on indoor thermal environment and energy-consumption of large space. Different forms of upper openings have different influence on indoor thermal environment and energy-consumption. This paper investigates the indoor thermal environment and the energy-consumption in a large space building with stratified air-conditioning, upper-side opening and roof opening using CFD technique, theoretical analysis and site-measurement.

This paper highlights the factors that should be considered when applying computational fluid dynamics (CFD) to large space design, and gives practical recommendations on how to achieve accurate results. Wall temperature is taken as the first kind boundary condition for CFD. Considering the effect of surface-to-surface radiation exchange, surface-to-surface radiation modeling is incorporated into CFD simulation using Gebhart absorbing coefficient. Further, mathematical modeling is established to calculate the convection coefficients that are a key factor of surface-to-surface heat exchange for more accurate prediction of CFD. The paper also compares the CFD results with site-measurement data. It shows that the CFD results agree well with the measured data and the average difference between CFD results and the site-measurement data is less than 6.9%.

The temperature and velocity fields in a large space building are simulated by PHOENICS software. The indoor cooling load is calculated by three methods: cooling load calculation of stratified air-conditioning, numerical simulation and site-measurement data. CFD calculation and stratified air-conditioning calculation of cooling load show good agreement with site-measurement data. The differences of indoor air environment and energy consumption between two kinds of openings are discussed. It is found that indoor cooling load in the case of upper-side opening is larger than that in the case of roof opening. The influences of the structural parameters and air-conditioning running parameters on indoor thermal environment and energy consumption are also presented in this paper. In the case of roof opening, the indoor cooling load increases with the increase of the nozzle height. When outdoor air velocity is close to 3m/s, an obvious increase in the indoor cooling load in the case of upper-side opening is found. In the case of upper-side opening, the effect of opening area and opening height on indoor thermal environment and cooling load under stratified air-conditioning is presented. The indoor cooling load increases steadily with the increase of opening area and its height respectively. Based on the above conclusions and field data, this paper describes the energy-saving potential of upper opening and its influencing factors such as climatic factors.

This paper also describes the measurements and evaluation of the indoor thermal environments in large space building. Measurements, including temperature distribution, humidity, air flow and outdoor weather conditions, were carried out for three seasons.

The results presented in this paper are useful to practical air-conditioning design. It will provide the theoretical foundation and reference for design.

全文链接   SWF文件格式,点击下载(5.78MB)。(SWF文档可用网页浏览器或者多媒体播放器等打开。)FLASH播放器下载